High-throughput technologies have changed basic biology and the biomedical sciences from data poor disciplines to data intensive ones. A specific example comes from research fields interested in understanding gene expression. Gene expression is the process in which DNA, the blueprint for life, is copied into RNA, the templates for the synthesis of proteins, the building blocks for life. In the 1990s, the analysis of gene expression data amounted to spotting black dots on a piece of paper or extracting a few numbers from standard curves. With high-throughput technologies, such as microarrays, this suddenly changed to sifting through tens of thousands of numbers. More recently, RNA sequencing has further increased data complexity. Biologists went from using their eyes or simple summaries to categorize results, to having thousands (and now millions) of measurements per sample to analyze. In this lesson we will focus on statistical inference in the context of high-throughput measurements. Specifically, we focus on the problem of detecting differences in groups using statistical tests and quantifying uncertainty in a meaningful way. We also introduce exploratory data analysis techniques that should be used in conjunction with inference when analyzing high-throughput data.
Prerequisites
This lesson assumes basic skills in the R statistical programming language and statistical concepts including population sampling and interpreting p-values.
To get started, follow the directions in the Setup tab to get access to the required software and data for this workshop.